Ivermectin: does P-glycoprotein play a role in neurotoxicity?
نویسنده
چکیده
The macrocyclic lactone ivermectin (Mectizan(R)) is widely used for the control of human filarial infections, particularly as a donated product for onchocerciasis and lymphatic filariasis. In the case of control of lymphatic filariasis in Africa, it is used in combination with donated albendazole. In areas co-endemic for Onchocerciasis and Loa loa, serious adverse reactions have been observed in patients with apparently high microfilaria counts of Loa loa. Recent findings suggest that the severe central nervous system side effects seen in various vertebrates following ivermectin treatment may be due to an absence of, or functional deficiency in P-glycoprotein. P-glycoprotein is expressed in the apical membrane of brain capillary epithelial cells and is responsible for limiting the brain penetration of a range of compounds. Toxicity of ivermectin in some collie dogs may be explained by a 4-bp deletion mutation of the mdr1 gene resulting in a frame shift, generating stop codons that prematurely terminate synthesis of P-glycoprotein. Additionally, sub-populations of CF-1 identified as expressing reduced levels of P-glycoprotein exhibit increased toxicity to substrates of this transporter. Furthermore, while the traditional view of drug-drug interactions is alteration in drug clearance mediated through a change in hepatic drug metabolism, some of these changes may arise through competition for binding sites on P-glycoprotein in the blood-brain barrier, resulting in reduced extracellular efflux and enhanced CNS toxicity. In conclusion, P-glycoprotein is an integral component of the human blood brain barrier and plays a central role in limiting drug uptake into the brain. Altered expression or function of p-glycoprotein could conceivably allow elevation of brain concentrations of ivermectin and produce severe neurotoxicity. This might arise through a genetic polymorphism in p-glycoprotein or co-administration of ivermectin with a drug or foodstuff that might inhibit this efflux transporter.
منابع مشابه
Multiple oral dosing of ketoconazole increases dog exposure to ivermectin.
PURPOSE The parasiticide ivermectin and the antimicrobial drug ketoconazole are macrolides that interact with P-glycoprotein. We investigated the effects of ketoconazole at a clinical dose on the pharmacokinetics of ivermectin, a CYP3A substrate with low hepatic clearance. METHODS Beagle dogs received a single subcutaneous injection of ivermectin at 0.05 mg/kg alone (n=6) or in combination wi...
متن کاملPharmacokinetic interaction of the antiparasitic agents ivermectin and spinosad in dogs.
Neurological side effects consistent with ivermectin toxicity have been observed in dogs when high doses of the common heartworm prevention agent ivermectin are coadministered with spinosad, an oral flea prevention agent. Based on numerous reports implicating the role of the ATP-binding cassette drug transporter P-glycoprotein (P-gp) in ivermectin efflux in dogs, an in vivo study was conducted ...
متن کاملIvermectin lotion (sklice) for head lice.
There have been no reports of serious adverse reactions with the use of topical ivermectin in a limited number of patients (i.e., fewer than 400).1,2 Ivermectin 0.5% lotion does not have the neurotoxicity concerns of lindane or the flammability concerns of malathion (Ovide).2,3 The safety of the lotion has not been established in patients younger than six months, and use in this age group is no...
متن کاملAn Investigation into the Role of P-Glycoprotein in the Intestinal Absorption of Repaglinide: Assessed by Everted Gut Sac and Caco-2 Cell Line
The present study aimed at exploring the potential of the P-glycoprotein (P-gp) transporters as a barrier to the repaglinide (REG) epithelial permeability. In-vitro intestinal absorption models, the everted gut sac, and Caco-2 cell line, were used to study the possible role of P-gp in intestinal transport of REG. In the everted gut sacs, apparent permeability coefficients showed cargo concentra...
متن کاملAn Investigation into the Role of P-Glycoprotein in the Intestinal Absorption of Repaglinide: Assessed by Everted Gut Sac and Caco-2 Cell Line
The present study aimed at exploring the potential of the P-glycoprotein (P-gp) transporters as a barrier to the repaglinide (REG) epithelial permeability. In-vitro intestinal absorption models, the everted gut sac, and Caco-2 cell line, were used to study the possible role of P-gp in intestinal transport of REG. In the everted gut sacs, apparent permeability coefficients showed cargo concentra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Filaria Journal
دوره 2 شماره
صفحات -
تاریخ انتشار 2003